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lished de Haas-van Alphen data of Joseph and Gordon, 
indicates that the two bands cross at a point about 
0.04 A"1 from the TKM plane. 

The transition region of magnetic breakdown across 
the small energy gap between these two bands has 
been studied in detail. The quantum oscillations which 
are observed in the galvanomagnetic properties are 
a transition region phenomena resulting from a per
turbation of magnetic breakdown by the Landau levels 
of the needle. The structure of the oscillations indicates 
that these Landau levels are split into discrete spin 
levels having a very large effective g factor. The data 

1. INTRODUCTION 

MAGNETOPLASMA oscillations obeying the same 
equations as atmospheric radio whistlers1 were 

first reported in solids (sodium) by Bowers, Legendy, 
and Rose2; in the context of solid-state physics they are 
known as helicons. The name is due to Aigrain,3 who 
first proposed achievable experiments to detect them 
in solids.4 

Sets of resonant frequencies in various materials, in 
addition to Na, were observed by Cotti, Wyder, and 
Quattropani5 '6 (In, Al, and Cu); Chambers and Jones7 
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are insufficient at present to allow us to determine if the 
quasiparticle states predicted by Pippard contribute 
significantly to an. 
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(Li, Na, K, Al, In, and InSb); Taylor, Merrill, and 
Bowers8 (Cu, Ag, Au, Pb) ; Libchaber and Veilex9 

(InSb, at microwave frequencies); Kanai10 (PbTe, at 
radio frequencies); and Khaikin, Edelman, and Mina11 

(Bi, at microwave frequencies). Detailed experimental 
studies of the mode structure in rectangular parallel
epipeds were made by Rose, Taylor, and Bowers12 (Na), 
and, with more refined detection techniques, by Merrill, 
Taylor, and Goodman13 (Na). Cotti, Wyder, and 
Quattropani5 '6 attempted a theoretical justification for 
the semiempirical rule12 obeyed by the resonant fre
quencies, however, the present author disagrees with 
their formulation of the boundary-value problem. 
Chambers and Jones7 exploited the helicon resonance 
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Methods for treating boundary-value problems involving helicon waves (whistlers in solids) are developed 
and used for infinite plates and cylinders. The magnetoplasma inside the solid is assumed to be "driven" by 
means of external coils, which set up an oscillatory field with sinusoidal variation along the two coordinates 
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reached, in which limit the lossy mode disappears. Several remarks are made concerning the various geometri
cal and physical properties of helicons. 
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phenomenon as a means of measuring Hall coefficients 
with high precision. An abstract proof for the existence 
of helicon modes (in samples with zero resistivity) was 
given by Legendy.14 

The macroscopic treatment of helicons may be 
conveniently started from the equation 

E + £ j X B = pj, (1.1) 

where E, B, and j are the electric field, magnetic field, 
and electric current; R and p are the Hall coefficient 
and resistivity, respectively (all in rationalized mks 
units). 

This article is concerned with the consequences 
of (1.1). Equation (1.1) will be assumed to hold true 
inside the sample carrying helicons; the field outside 
the sample will be approximated by the product of a 
static field and the time-dependent factor exp(icor). 
Equation (1.1) was derived from the Boltzmann 
equation by Cotti, Quattropani, and Wyder.6 

Besides the standard assumptions ensuring that (1.1) 
correctly relates steady currents and fields, we under
line, for emphasis, the assumptions ensuring that it 
correctly relates currents and fields depending on posi
tion and time. These assumptions require the wave
length and time period of helicons to be much larger 
than the relevant parameters of the microscopic con
duction mechanism. [[The article of Chambers and 
Jones7 contains a thorough list of the assumptions 
involved in (1.1).] 

When the wavelength becomes small, the helicon 
phenomenon becomes dependent on the microscopic 
properties of the medium. This case is beyond the scope 
of the present paper, it is treated in Refs. 15-26. 

The dispersion law for short-wavelength helicons 
propagating along the magnetic field was derived by 
Sheard,15 starting from the results of Rodriguez16 and 
Kjeldaas17 obtained for acoustic absorption. A thorough 
treatment of the short-wavelength and high-frequency 
limit was given by Kaner and Skobov.18 Taylor, 
Merrill, and Bowers19 observed an edge in the absorp
tion of short-wavelength helicons in sodium and 
explained it in terms of the Doppler-shifted cyclotron 
resonance predicted by Stern20 (similar to the Doppler-
shifted cyclotron resonance connected with ultrasonic 
waves, discussed by Kjeldaas17). Kaner and Skobov,18 

Miller,21 and Quinn22 predicted giant quantum oscilla
tions in the absorption of helicons; Stern and Callen23 

predicted interactions between helicons and magnons; 

14 C. R. Legendy, J. Math. Phys. (to be published). 
15 F. W. Sheard, Phys. Rev. 129, 2563 (1963). 
16 S. Rodriguez, Phys. Rev. 112, 80 (1958). 
17 T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959). 
18 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45, 

610 (1963) [English transl.: Soviet Phys.—JETP 18, 419 (1964)]. 
19 M. T. Taylor, J. R. Merrill, and R. Bowers, Phys. Letters 6, 

159 (1963). 
20 E. A. Stern, Phys. Rev. Letters 10, 91 (1963). 
21 P. B. Miller, Phys. Rev. Letters 11, 537 (1963). 
22 J- J- Quinn, Phys. Letters 7, 235 (1963). 
23 E. A. Stern and E. R. Callen, Phys. Rev. 131, 512 (1963). 

Kaner and Skobov,18 Langenberg and Bok,24 and Quinn 
and Rodriguez25 predicted interactions between helicons 
and phonons. The latter interaction was observed by 
Grimes26 in potassium. 

The present paper is organized as follows: Sec. 2 
deals with helicons in an infinite medium; in Sees. 3-6 
boundaries are introduced. In Sec. 5 the boundary-value 
problem is solved for an infinite plate perpendicular to 
the external magnetic field, an infinite plate, and an 
infinite cylinder parallel to the external magnetic field. 
In each case an oscillatory "driving field," sinusoidally 
varying along the two coordinates tangential to the 
boundary, is assumed, and the response field is com
puted as a function of the frequency and the tangential 
wave vector. In Sec. 6 is it shown that, ignoring 
anomalous skin effect, the Ohmic loss in the boundary 
surfaces parallel to the external field does not tend to 
zero in the limit of zero resistivity. Under anomalous 
skin-effect conditions the surface mode responsible for 
the loss disappears. 

For the sake of symmetry and simplicity in what 
follows, we shall call all fields inside the sample helicon 
fields, instead of restricting the term to the freely 
propagating component. 

2. HELICON WAVES IN AN INFINITE MEDIUM 

Write B=Bo+b(r,/), where B0 is the (uniform and 
constant) external magnetic field. Then, by assuming 
B0^>b, linearize (1.1): 

E+i?jXB0=pj. (2.1) 

Take the curl of both sides and combine with 
Maxwell's equations, neglecting displacement current. 
Letting the % axis point along the field B0 the result is: 

^o db db 
+ # V X — + V X ( V X b ) = 0, (2.2) 

p dt dz 

u^—BoR/p^cocT. 

Assuming plane-wave solutions of the form 

b = b(0)expp(w/-k-r)], 

k=(«A7), (2.3) 

t=(x,y,z), 

Eq. (2.2) becomes: 

(/*o/p)«ob—^7kXb+£2b==0, 
k2 = a2+P2+y2. (2.4) 

Written out in detail, (2.4) is a set of three coupled 
homogeneous linear equations for the three components 
of the constant vector b(0). The secular equation has 

24 D. N. Langenberg and J. Bok, Phys. Rev. Letters 11, 549 
(1963). 

26 J- J- Quinn and S. Rodriguez, Phys. Rev. Letters 11, 552 
(1963). 

26 C. C. Grimes, Bull. Am. Phys. Soc. 9, 58 (1964). 
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one root leading to a physically unacceptable solution; 
dividing out that root, the secular equation becomes: 

[ ( M O / P ) C O - ^ 2 ] 2 - ^ V = 0 . (2.5) 

From Eq. (2.4), aside from an arbitrary constant factor, 

(bo)x=ay+i(l3/uy)l(fjLo/p)o)~ik2'], 

(h)y=i3y-i(a/uy)Z(ixo/p)a>-ik2~], (2.6) 

(M*=-a2-£2. 
Factorizing (2.5), the dispersion relation may be re
written in the following simpler form5,6: 

u=(p/»o)(uky+ik2), (2.7) 

and the solution2: 

b = (ay+ikp,/3y-ika,-a2-p2) e x p p ( « / - k - r ) ] . (2.8) 

In the limit p—>0 the product pu=—BoR remains 
unaltered and the second term in (2.7) tends to zero, 
thus (2.7) becomes2"4 

a^-H^BoRky. (2.9) 

If k$, kv, k$ are any orthogonal components of k, the 
component y can be expressed in terms of these, and 
so can k2. Thus (2.5) interrelates the four (complex) 
quantities a>, k^ kv> k$, and if any three of these are 
specified, it can be solved for the fourth. In the cases 
to be treated below, a>, k%, kn are given real numbers; 
Eq. (2.5) is a quartic equation in k$, and therefore in 
general it yields four different complex roots. For each 
of these, k2 is well defined, but k has two values. The 
one to be used in (2.8) is the one satisfying (2.7). 
[Because each of the four k$ satisfies (2.5), and (2.5) is 
merely the square of (2.7), one and only one square 
root of k2 for each k$ necessarily satisfies (2.7).] 

The above discussion should replace the remarks 
connected with a " ± " alternative in Eq. (3) of Bowers, 
Legendy, and Rose2; the discussion concerning this 
point in Ref. 2 is confusing. 

In the remainder of this section we shall make several 
simple remarks pertaining to helicons. 

Direct computation from (2.8) shows that for a plane 
wave of helicons 

V X b = £ b , 

j = Mo~1VXb= iuo-^b. (2.10) 

Thus, when k is real, the current associated with a 
single plane wave is everywhere parallel to the magnetic 
field. Let us multiply Eq. (2.2) through by p//x0, let 
p—*0, replace the operator d/dz by — iy and the 
operator V by the vector — ik. Then (2.2) becomes: 

a b / ^ = c o X b , (2.11) 

o>= —fJKT1BoRyk= constant vector. 

Equation (2.11) can be recognized as the precession 
equation. There are two ways in which the vector G> can 
be real: If all components of k are purely real, or if all 

components of k are purely imaginary. A glance at the 
expression for <*> shows that when J R < 0 , the scalar 
product w Bo is positive in the former case and negative 
in the latter. This means that if the vectors rotate 
around the field lines in a sense agreeing with the 
cyclotron rotation of the carriers, the waves propagate 
freely; if they rotate oppositely, the waves are exponen
tially damped. 

When k is real, the instantaneous spacial pattern of 
fields might form a right-handed screw, or a left-handed 
screw; the screw sense is determined by the sign of k. 
To show this, let a = (0,0,&2), k = k/k, Gi = J&Xa 
= (A0,-&x,O), and G2=kX(kXn)=(ay)l3y)-a

2-p2). 
Clearly, when k and the components of k are real, Gi 
and G2 are two real vectors of equal length, perpendic
ular to each other and to k. Now, Eq. (2.8) can be 
written as follows: 

b = (G2+iGi) expp(coZ-k-r)] . 

This is the standard form of a circularly polarized wave; 
the screw sense of the instantaneous pattern is deter
mined by the right- or left-handedness of the Cartesian 
coordinate system G ^ k . Note that changing the sign 
of k, changes the sign of Gi, but leaves G2 unchanged. 
One can see at once that when k is negative, the screw 
sense is right-handed; when k is positive, the screw 
sense is left-handed. [Note that, by Eq. (2.10), j and b 
are antiparallel when the screw sense is right-handed 
and parallel when it is left-handed.] 

Of course, when the wave vector is made complex, 
the geometrical clarity of the situation fades. 

So far, no mention has been made of the electric field 
patterns. If the current density is specified, (2.1) gives 
the electric field explicitly; when p —* 0, this relation 
takes the form 

E = - £ j X B o . (2.12) 

As seen from (2.10), the currents in any given plane-
wave form a pattern identical to the magnetic field 
pattern, except for a multiplicative constant. Thus all 
remarks made for magnetic fields can be repeated for 
currents. However, they cannot be repeated for electric 
fields. Equation (2.12) shows that when p—>0, E 
cannot have a component along Bo. Thus, unless 
a~p=0, the electric field has a longitudinal part, i.e., 
a part with V • EF^O, as well as a transverse part. If the 
reader has not encountered a similar situation before, 
he may wonder if this is compatible with the assumption 
of neglecting displacement currents. The latter assump
tion brings one of Maxwell's equations to the form 
V X H = j ; therefore, the electric current is represented 
as the curl of a vector and it can have no divergence. 
This means that space charges cannot periodically 
build up and disappear, thus the electric field cannot 
have a longitudinal component. The paradox disappears 
in the light of the actual magnitudes of the quantities 
involved. The current does have a longitudinal com
ponent, but it is about 1018 times smaller than the 
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transverse component (the ratio between conduction 
current and displacement current densities at 10 cps 
is about 1018). Thus, space charges do periodically 
appear and disappear, but they are very small. The 
reason why the longitudinal component of electric field 
is still of the same order of magnitude as the transverse 
component is that E itself is very small; it is about 109 

times smaller than that which would correspond with 
the same magnetic field in a freely propagating vacuum 
wave. The number 109 is the ratio of the speed of light 
to the helicon phase velocity at 10 cps. 

The dispersion relation (2.7) does not contain the 
assumption that the resistivity p is small. For one can 
rearrange Eq. (2.7) to read as follows: 

r —io>no/p 11/2 

ll+iu(y/k)J 

In the limit U=UCT —> 0 this reduces to the standard 
skin-effect formula. 

The following remark27 concerns helicons whose 
amplitude is not small. Suppose b is not negligible 
compared to Bo. Then a nonlinear term 

- W V p ) V X ( j X b ) (2.13) 

must be added to the left-hand side of (2.2). And yet, 
a single plane wave of form (2.8), obeying the dispersion 
relation (2.7), still satisfies the equation. For, by virtue 
of (2.10) in such a wave j=/zd~1^b, and in the nonlinear 
term (2.13) 

3Xb=.(l/iuo)*bXbsO. 

Thus, (2.13) identically vanishes. The sum of two 
solutions is, as usual in nonlinear equations, not 
necessarily a solution. 

3. BOUNDARIES 

The problem of dealing with boundaries has been 
first considered by Cotti, Wyder, and Quattropani.5 

They assumed that the boundary condition to be 
satisfied is that all three components of E must be 
continuous at the boundary, and no electric current 
should cross the boundary. In their second paper6 the 
authors drop the former condition and retain only the 
latter. (Indeed, the normal component of E is, in 
general, discontinuous.) Chambers and Jones,7 in their 
treatment of driven oscillations (in an infinite slab) use 
the condition that the tangential components of 
magnetic field must be continuous across the boundary; 
in calculating frequencies of free oscillation they use 
the current condition (i.e., the requirement that 
currents do not cross the boundary). 

We wish to make a few comments on these boundary 
conditions. Since all three articles deal with nonferro-
magnetic materials of finite conductivity, there can be 
no surface currents in either, and all three components 

27 E. F. Johnson (private communication). 

of the magnetic fields must be continuous across the 
boundary. This boundary condition, together with the 
assumption that the vacuum fields are static, implies 
that the current condition is satisfied. (For, if a vector 
is continuous across a boundary, the normal component 
of its curl is also continuous, but inside the sample 
V X H is the current; outside the sample V X H is 
zero.) However, the assumption that a field satisfies the 
current condition clearly does not ensure the continuity 
of H. Furthermore, in Sec. 5, we shall be able to con
struct a solution satisfying the current condition in a 
finite cylinder for any given frequency. The latter 
construction dramatizes the criticism against identify
ing a frequency as a frequency of resonance merely on 
the ground that at that frequency there exists a helicon 
field satisfying the current condition. 

In the present article we shall use the boundary 
condition that all components of the magnetic field are 
continuous. Since the problem is quasistatic, this 
implies that the boundary conditions on electric field 
are automatically satisfied. The latter statement may be 
verified as follows: 

Assume that the field b(r) exp(io)t) satisfies (2.2) 
inside the sample, satisfies V X b = 0 and V*b=0 
outside the sample, and is continuous at the boundary. 
Construct an electric field Ei defined outside the 
sample such that VXEX= — zcob(r). (This can always 
be done by use of the Green's function for the curl 
operator, i.e., in parallelism with the elementary 
calculation of a static magnetic field from the current 
distribution.) The electric field inside the sample, Eins, 
is uniquely determined from b through (2.10) and (2.1); 
one can easily check that automatically, VX Eins=icob. 
Write the electric field outside the sample as Ei+E2. 
The boundary condition requires that the tangential 
components of electric field be continuous at the 
boundary; thus, with Ei and Eins given, (E2)tang is 
specified at the boundary: (E2)tang= (Eins— Ei)tang. 
From the continuity of the normal component of b it 
follows that the line integral of E2 over any closed curve 
lying on the surface vanishes. Thus a scalar potential cp 
can be defined on the surface in such a way that 
(E2)tang = (—W)tang. (The definition can be made 
unique by taking into account the net charge on the 
sample.) The problem then reduces to extending (p into 
all space in such a way that W = 0 throughout and 
<p —->• 0 at infinity. This problem is a well-known case of 
the Dirichlet problem,28 and can always be solved. 

The problem of driven oscillations will be formulated 
in parallelism with the standard problem of "reflection 
and refraction'' in optics. 

Imagine the vacuum field decomposed into an 
"incident" component or "driving field" defined as the 
field set up by the driving currents alone (i.e., as if the 
sample were removed), and a "reflected" component 

28 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Chap. 5. 
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due to the currents and charges in the sample. (Note 
that the former may be singular at infinity, the latter 
may be singular inside the sample but not vice versa.) 
The "transmitted wave" is the helicon field in the 
sample so chosen as to satisfy the boundary conditions 
at the samples surface. 

As indicated in the Introduction, in Sec. 5 we shall 
consider three types of infinite samples: A plate perpen
dicular to the magnetic field, a plate parallel to the 
magnetic field, and a cylinder parallel to the magnetic 
field. For all three of these the driving field will be 
assumed to be a sinusoidal function of the two coordi
nates parallel to the surface; the corresponding com
ponents of the wave vector are the two given quantities 
referred to in the previous section as k% and k^ With 
these specified, the field equations restrict the third 
component to a choice of two in the vacuum and a 
choice of four in the conductor. Of the former two, one 
leads to singular behavior at infinity—that must be 
chosen as the incident wave; of the latter four, some 
may lead to singular behavior inside the sample—those 
must be disregarded. The complex constants multiply
ing the allowed fields (counting the reflected field too) 
are the only unknowns of the problems, and for them 
the boundary conditions provide the necessary and 
sufficient number of equations. 

From the results it is then possible, if desired, to 
obtain "resonance curves" by fixing k$ and kn and 
varying the frequency. 

4. REFLECTION AND REFRACTION 

The following two simple boundary-value problems 
shall serve to illustrate the method outlined in Sec. 3. 
The solutions in Sec. 5 consist of straightforward 
synthesis of the observations made in 4A and 4B below. 

A. Conducting Front in the x}y Plane ; 
a, (5, <*> Specified 

Suppose the region z^O is filled with conductor of 
resistivity p, satisfying (2.1), and the rest of space is 
vacuum. Assume the driving field has a frequency a> and 
its variation along x and y is wavelike; a, j8, and co are 
specified by the problem. The component a is real; 
without loss of generality we can set # = 0 . 

The dependence of the fields on x, y, and I is described 
by the factor ex-pi (cot—ax). We remark that the tangen
tial phase velocity u/a is not the speed of light in vacuo, 
but is many times smaller. (In a typical experiment in 
sodium2 it is of order 109 times smaller.) The frequency 
o) is dictated solely by the oscillator connected to the 
driving coils, and the wave numbers by the geometrical 
configuration of these coils. Since the problem has 
translational symmetry along x, y, and t, and is governed 
by linear equations, standard symmetry argument 
shows that the reflected field and the helicon field must 
have the same sinusoidal variation as the incident field. 

We shall denote the incident and reflected field by b0 

and b r respectively. 
Since bo cannot become infinite as z —> — <*> and br 

cannot become infinite as z —» <*>, bo and br must have 
the form: 

bo] 

bj 
XZ(-ia,0,±\a\)e±l° 

t— gi(ut—ctx) 

(4.1) 

where the upper line corresponds with the upper sign, 
and the lower line with the lower sign. The scalar 
quantities bo and br are constants (possibly complex); 
^o is given, br is unknown. 

The components of wave vector called k% and kv in 
Sees. 2 and 3 are here a and &; and, as was said there, 
for the third component k$ (in the present case 7) the 
field equations allow four different values which can be 
found from (2.5). They are 

P=~ 

[Yi= — 73 

[72=— 74 

1 + i u (co/co 1)+%u2 [u(o)/o)i)—i~]2 

(4.2a) 

1+u2 1+u2 

o>i= —{XQ^BORO2 

Inry i^O, Im.72^0. (4.2b) 

To write down the helicon solutions (2.8) it is necessary 
to evaluate the quantities k corresponding to each 7. 
These are "defined" in (2.7), which can be rearranged 
as follows: 

kn= ( l M n ) [ W p ) « " * » ! ] » n=zl> 2> 3> 4. (4.3) 

From (4.2) and (4.3) it is seen that the four values kn 

are pairwise connected by the relations 

With these and (2.8), the four helicon waves are 

fbil f&il 
X f(±7i,=Fi*i, -a)<T i 7 1 0 , 

X f ( ± 7 2 , = F « 2 , - a ) ^ i ^ , 

(4.4) 

*= pi(u)t—ax) 

One can check, by going to the limit p —> 0, that bi 
and b2 differ in their direction of circular polarization; 
so do b3 and b4. By definition [see (4.2)], 71 and 72 have 
positive imaginary parts. (For the case p = 0 , when 71 
and 73 are purely real, 71 is chosen by means of a 
limiting procedure p—»0+. Below, we shall assume 
that p is never strictly zero.) Therefore b3 and b4 
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diverge at z-^~ <*> and must be excluded. (In Sec. 5A, 
where the sample is finite in the z direction, we shall 
have need for all four solutions.) The constants bi and 
b2 together with br in (4.1) are the unknowns of the 
problem. For the three unknowns the boundary condi
tion that b is continuous at s = 0 furnishes three 
equations: 

Yi&i+72&2+ioAr= —iabo, 
— ikibi—ik2b2 = 0, 

abi+ab2+ \a\br= \a\bo. 

The solution is: 

- 2 a bQ 2a b0 -\a\A+A' 

\a\A+A' ki \a\A+A' k2 \a\A+A' 

1 1 iyi iy2 

A=- , A'= + — . 
ki k2 ki k2 

B. Conducting Front in the y, z Plane; 
(3, y, co Specified 

Let the region x^O be filled with conductor, and the 
rest of space be vacuum. Assume that, similarly to the 
case in 4A, the driving field imposes a sinusoidal 
dependence of the fields on the tangential coordinates 
and time; the variation is characterized by the three 
real quantities, /3, y, and «. Note that, because the z 
direction is singled out by the vector Bo, neither 8 nor 
Y can be set equal to zero without loss of generality. By 
the same arguments that lead to (4.1), the incident 
and reflected wave are 

{!j=0xi(±*'-*ft-we±"' 
K=09«+7»)i/»> 

t—ei(.ut—$y— yz) ^ 

Equation (2.5) is most conveniently solved for k2; the 
expression for k2 only involves y and not p. 

r / 4 co V'2"!2 

&2= - £ « Y 1=fc [ 1+i_ \ I (45) 

L \ u co2/ J 

u2=~ fx^BoRy2; 

from this, 

f a i = - a 8 1 f T / 4 cox1/2"]2]1/2 

H^-i«vi±w—) 
\a2——aO I L \ u co2/ J J 

I m a i ^ O , l m a 2 ^ 0 . (4.6) 
The corresponding four values of k are computed by 
means of (4.3); they are pairwise related as follows: 

kl=kz, k2—k±. 

For the purposes of the present arrangement it is 
desirable to replace (2.8) by 

(—K2,afi+iky,ay—ikd) exp[i(coJ—k-r)], (4.7) 

which differs from (2.8) only in a constant factor 
— n2/{ay-\-ik8). The four helicon waves are: 

b
3 J (4.8) 

I [ X ^ ™ ^ ± a 2 ^ + ^ 2 Y , ± a 2 Y ™ i ^ ) ^ ^ 2 a ; . 

Of these, b3 and b4 diverge when x —> — co and must be 
dropped. (In Sec. 5B, where the sample has a finite 
extension in the x direction, there will be need for all 
four solutions.) The coefficients h and b2 together with 
br are the unknowns of the problem; for them the 
boundary conditions furnish the following three 
equations: 

(-K2)bL+(-K2)b2-(-K)br=Kbo, 

(arf+ik1y)bi+ (a2p+ik2y)b2- (-i(3)br= ~ipb0, 

(aiy—ikif})bi+ (a2y—ik2fi)b2— (—iy)br= —iybo. 

The solutions are 

- 2 1 2 1 -KA+A' 
h = bo, &2 = h, br= , 

KA+A'fa KA+A'k2 KA+A' 

1 1 —iai ia2 
A= , A'= + — . 

kl k2 kl k2 

Finally, consider Eq. (4.6) in the limit u^>4:co/co2. At 
the frequency co = (K/Y)^2 the quantities a2 and a* 
vanish, which means that the helicon wave vector is 
tangential to the boundary. Above this frequency a2 

and a4 are real, but below it they are imaginary. The 
phenomenon is recognized as a phenomenon familiar 
from geometrical optics: total reflection; below the 
frequency (K/y)co2 the tangential phase velocity of the 
artificial vacuum wave becomes lower than can be 
matched by helicons. 

The same does not occur when the conducting surface 
is parallel to the x,y plane. In the limit u-+ oo, p —» 0 
the phase velocity is given by Eq. (2.9): a>/k 
= —fxo^BoRy. When y is fixed by the driving field, the 
phase velocity is fixed, but if only a and fi are fixed by 
the driving field, the phase velocity can be made smaller 
than any arbitrary quantity by choosing y small 
enough. 

5. THREE SIMPLE RESONANCE PROBLEMS 

Sections 5A, 5B, and 5C contain the solutions of 
three resonance problems that can be solved exactly. 
The term "resonance problem" is intended to underline 
the fundamental difference between these three problems 

file:///a/bo
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and the two described in Sec. 4. I t can be verified at once 
that, in each of the problems below, for a fixed wave 
vector of the driving field there exist nonzero (com
plex) frequencies for which the secular determinant 
vanishes; the same is not true in 4A and 4B, 

A. Infinite Plate Perpendicular to B0 

Let the region — a^z^a be filled with conductor and 
let the rest of space be vacuum. As in Sec. 4A, the two 
specified components of the wave vector are a and /?; 
a is real; without loss of generality we set 0 = 0 . The 
allowed values of y are those given in (4.2). 

Suppose the incident field is of the form 

bo= b$(—ia coshaZjOjO! sinhas), | z| ^ a, 
£—ei(ut-ax) ^ (51) 

Arguments similar to those used in the previous section 
show that the reflected field in the two vacuum regions 
z > a and z < ~ a is, respectively: 

br=bri£(—ia,0,— \a\)e~^al(z~a), in region z>a, 

= br2^(—iafiy\a\e]a^z+a), in region z<— a, 

(5.2) 

where br\ and bri are constants, as yet undetermined. 
Of the four helicon fields (4.4) all four will be needed; 
their amplitudes fii, b2, bz, b* are further unknowns of 
the problem. For the six unknown constants the 
boundary conditions furnish six linear equations; three 
express the condition that at the surface z—a, all three 
components of the magnetic field are continuous; the 
other three express the same for the surface z= —a. For 
the sake of illustration, the six equations are written 
out below: 

y1e-^labi+y2e~i'y2ab2--yieiyiabz~y2e^2ab4: 

— ia(~bri)=—ia (coshaa)#o, 

-ik1e~ivlabi~ik2e-iT'ab2+ikieivlabz 

+ik2e^2abi=0) 

—ae-^bi-ae-^^—ae^bs—ae^bi 

— \a\ (—bri) = a (sinhaa)^o, (5.3) 

y1e
iylabi+y2eiy2ab2—yie~iylah~y2e-i'Y2abi 

— ia(—br2) — — ia. (coshaa)bo, 

— ik1e
i^labi~ik2e^2ab2+ikie~^labz 

— ae^labi—ae^2ab2—ae-^lab^—ae~^2<lb^ 

+ J a I (—br2) = — (sinha:a)6o. 

I t can be seen at once that the trial relationships 
bi——bz, b2~—b±, bri=br2 split the set into two 
identical sets of three equations. The physical explana
tion of this is given in the following symmetry argument. 

A boundary value problem involving helicons can be 
said to possess reflection symmetry about a plane if 
reflection of the sample and B0 about the plane, 

followed by reversal of the vector Bo, turns both the 
sample and Bo into itself. The reason for including Bo 
as a part of the system rather than the field is that in 
the equations [namely in (2.1)] Bo appears merely as 
a geometrical property of the system, rather than a 
part of the magnetic field; however, the pseudovector 
nature of Bo shows up in the vectorial product—hence 
the reversal of sign upon reflection. When a problem 
has reflection symmetry about some plane, it possesses 
solutions symmetric and solutions antisymmetric under 
reflection about that plane. Because all our solutions 
relate to magnetic fields, we shall arbitrarily use the 
terms "even" and "odd" to denote solutions in which 
reflection leaves the magnetic fields b unchanged and 
changes the signs of the magnetic fields b, respectively. 
(The symmetry of the currents and electric fields is 
opposite to the symmetry of the magnetic fields b.) The 
problem of this section is clearly symmetric about the 
plane JS=0. (Note that it is not symmetric about the 
plane x = 0 , because the aforementioned transformation 
reverses Bo instead of leaving it unchanged.) Because 
the driving field (5.1) is even, so must be all the other 
fields, which explains the simplification of the set (5.3). 

Solving the three equations is quite straightforward; 
the solution is conveniently written in the following 
form: 

b//= bI^(Af(z)1~iA0(z),iaA (a)), (5.4) 

where g= e
i(<at~ax), 

sinYiZ sin722 
A{z) , 

d 
A'(z) = -A(z), 

dz 

COS712 c o s y 22 
A0(z) = . 

cosYia cosY2# 

The constants bn in (5.4) and bri, bT2 in (5.2) are 

a coshaa+ | a | sinhaa 
bH=— i 60, 

\a\A(a)+A'(a) 

—• J a IA (a) coshaa-\- (a/1 a | )A' (a) sinhaa 
bri — br2— bo, 

\a\A(a)+A'(a) 

In the special case a = 0 , (4.2) and (4.3) yield 

7 i = ~72*= *i= «*i*= - (a.Mo/p«)1 '2(l+i/u)~112, 

and if 

the helicon field is 

bH=(i4'(*),(*/2Mo(*),0)e'" ' . 
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FIG. 1. Resonance curves for an 
infinite plate parallel to the x,y plane, 
with a = 0. The frequency scales have 
been adjusted to bring the first peaks 
into coincidence (courtesy of M. T. 
Taylor). 

2 3 4 
SQUARE ROOT OF FREQUENCY (ARBITRARY UNITS) 

The average of the x component taken over the whole 
slab is 

1 ra 

4:aJ-a 

A (a) tanyia /tanhYi#\* 
W & = _ = _ + ( _ j 

2a 2yia \ 2yia 

The equations (5.2) and (5.4) still correctly describe 
the fields h and bH but bH, hi, hi, A (z), A0(z), must be 
redefined: 

in agreement with the corresponding result of Chambers 
and Jones.7 (We remark that these authors ignored the 
existence of a Reflected field," but in the special case 
a=0 this leaves the shape of the frequency response 
curves unaffected, and the theoretical curves of 
Chambers and Jones are in good agreement with 
experiment.) The imaginary part of <p, plotted against 
frequency, goes through maxima, corresponding to 
resonances (Fig. 1). One can see from the above 
expression that <p is infinite at those (complex) fre
quencies where yia= ztir/2, ±37r/2, • • •, or 72^= ±7r/2, 
±3717% * * •; these are the roots of the determinant of 
(5.3). When a^O, the roots of this determinant are the 
roots of \a\A(a)+A'(a), the common denominator in 
the expressions for bH, hi, and hi. We calculate the 
correction to the root yia=ir/2 to first order in aa. 
When aa<sA, Af(a)^2, and A(a)~(taxLyid)/yi 
+ a(tanh|7r)/(i7r)= ( tan? ia ) /y i+ 0.58a, the desired 
root yid is given as the first root of the transcendental 
equation 

taxiyia/yia~ — 2/aa—0.58. 

For a square plate with a ratio 15:1 between edge 
length and thickness, aa^7r/15V2 and yia^> 1.025(thr).' 
This corresponds to a 5 % correction in frequency which 
may explain the discrepancy between theory and 
experiment reported by Chambers and Jones.7 

Unfortunately, because of the necessity to deal with 
complex numbers, plotting graphs such as Fig. 1, or 
computing roots to the secular determinant is usually 
extremely lengthy; when aa and p are not small, such 
calculations call for numerical work. When the driving 
field is odd in z, i.e., 

b0=bo^(—a sinha#,0,a: coshaz), \z\^a. 

A(z)=-
cosyis cosy2£ 

ki sinyitf k2 siny2a 

A'(z) = -A(z), 
dz 

smyis smy2s 
^ 0 ( 2 ) = -

sinyitf siny2a 

a sinha:a+ | a \ coshaa 
bn= "i ;—; — — &o, 

hi=—br>. 

\a\A{a)+A'(a) 

-\a\A(a) s inhaa+ (a/\a\)Af(a) coshaa 

\a\A{a)+A'{a) 

B. Infinite Plate Parallel to Bo 

Let the region — a^x^a be filled with conductor, 
and let the rest of space be vacuum. As in Sec. 4B, the 
two specified components of the wave vector are ft and 
7, both real; neither of them can be set equal to zero 
without restriction of generality. The allowed values 
of a are those given in (4.6). 

One can check by direct computation that to a driving 
field 

b0 = #o£ (* sinh/cx,—iff cosh/a;,—iy COSIIKX) , | x | ^ a, 

The response is 

hH=bHii(iK2A(x),l3A'(x)+yAo(x),yA'(x)-l3Ao(x)), 

in — a^x^a, 

hr=hi^(--Ky~il3,-iy)e-^x-a\ for x^a, 

= h2£(K,-ip,-iy)eK(*+a), for x^—a, 
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where 
sinh/ca+cosfoca 

bH = —i b0, 

bri=br2=-

icA(a)+A'(a) 

-KA(O) coshKd+A'(a) sinh/ca 

A(x) = -

aA(a)+Af{a) 

sinaiff sina2^ 

-bo, 

ki sinaia k2 sma2a 

A'(x) = —A(x), 
dx 

A0(x)-=-
smaix sma2x 

sinaid sma2fl 

I t can be seen at a glance that the helicon field b# is 
a linear combination of the four helicon fields (4.8). 

When the driving field is antisymmetric, 

bo= &o£(* coshtcXj—p sinho:,—y sinh/a), |x \ g:a. 

A(z), Ar{z), Ao(z)9 BH, bri, br2, must be redefined as 
follows: 

sinh/ca+cosh/ca 
bH=—i h, 

KA(a)+A'(a) 

—KA(O) sirihKa-{-A'(a) cosh/ca 
br= b0, 

KA(a)+A'(a) 

cosaiX cos«2# 
A(x) = -

ki cosaia k2 coso^a 

d 
A'(x) = —A(x), 

dx 

AQ(X) = -
smaix sino!2X 

sinaia smo!2« 

Note that the reflected field possesses a symmetry 
about the plane x—0 which corresponds with the 
symmetry of the incident field, but the helicon field has 
no such symmetry. 

C. Infinite Cylinder Parallel to B0 

[Given y, n{ = k<p)~] 

Adaptation of the formula (2.8) useful to problems 
of cylindrical symmetry, can be obtained by formally 
summing solutions (2.8) over all ^=tan~1(/3/o;) with a 
weighting factor exp(m^) . Through the formula 

J o 

ei(n6-z Bin9)d6=z 2 T ( - 1)»Jn(Z) , 

of kr, n, 7, and the cylindrical components, the solutions 
have the form 

ZR(krr)=Z(Rr,R„Rz), 

t— gi(wt+n<p—yz) 

where 

Rr= (k—y)Jn-i(krr)+ (k+y)Jn+i(krr), 

Rv=i(k—y)Jn-i{krr)—i{k-\-y)Jr^i{krr), 

Rz=— 2ikrJn(krr), 

k2=k2+y2. 

Independent solutions are obtained by replacing the 
Bessel functions by Neumann functions; but these are 
singular at r=0 and are of no interest to us. 

Let the cylindrical region r^ a be filled with conductor 
and let the rest of space be vacuum. The driving field 
fixes the quantities y and n\ y is real, n= 0 , ± 1,±2, • • •. 
The allowed values of k2 and kr are identical with the 
allowed values of k2 and a given in (4.5) and (4.6) with 
the substitution /3=0 used in the latter equation 
corresponding to the fact that k2=kr

2+y2. Because of 
the symmetry properties of Bessel functions, reversing 
the sign of kr leaves the whole solution unchanged 
except at most for sign, thus, rather than four, there 
are only two independent acceptable helicon solutions. 
There is only one possible incident field and one 
reflected field satisfying the usual requirements: 

ko=bo£(yIn(yr),(n/r)In(yr),-iyIn(yr)), 

hr=br^yKn
f(yr)y(n/r)Kn(yr),-iyKn(yr)), 

where 

In(z) = ^in+1Un(iz)+iNn(iz)2, / » ' ( * ) = - / „ ( * ) , 
2 dz 

Kn(z) = i-nJn(iz), 
d 

Kn'(z)=-Kn(z). 
dz 

this introduces Bessel functions. Expressed in terms 

Thus the problem is reduced to three equations express
ing that at r = a the magnetic field is continuous. Letting 
b\ and b% denote the amplitudes of the two allowed 
helicons we have at r=a: 

Rrlbl+Rr2b2 — yKnbr = yIn% , 

n n 
R<p\biJrR<P2b2 Knbr=—Inbo, 

a a 

Rzlbi-\-RZ2b2+iyKnbr^= — iyInbo. 

Again the roots of the determinant of the set give the 
conditions for oscillation or free propagation. 

The problem of 5C has reflection symmetry (in the 
sense of 5A) about all planes perpendicular to the z 
axis; therefore, if, under reflection about any such 
plane the incident magnetic field is antisymmetric, all 
of the magnetic field will be antisymmetric, and all the 
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currents symmetric. Reflection symmetry of currents 
about a plane means that the currents never cross that 
plane. Choosing the incident field to be the sum of two 
fields of form (5.5) differing in the sign of 7, it is possible 
to set up a standing wave pattern in the z direction; 
such a pattern possesses a set of fixed planes about 
which the said reflection symmetry exists at all times, 
i.e., planes which are never crossed by currents. Thus, 
as promised in Sec. 3, for any given frequency we can 
construct a helicon field satisfying the "current condi
tion" (i.e., the requirement that currents do not cross 
the boundary) for a finite cylinder. 

In a similar way, the infinite plate of 5B can be driven 
so as to possess a similar set of planes perpendicular 
to z. However, because no problem involving helicons 
has symmetry about a plane parallel to the external 
magnetic field, analogously chosen driving field cannot 
achieve a similar set of planes parallel to z in the 
problem of 5A or of 5B. Thus, the current condition for 
a finite rectangular box cannot be satisfied by applying 
an appropriately chosen driving field to the plates 
of 5A or 5B. 

Cotti, Wyder, and Quattropani5 obtained solutions 
satisfying the current condition for an infinite rectan
gular bar, finite along y and z, by adding four freely 
propagating plane waves of helicons (or, more precisely, 
four helicons of that mode which in the limit p —> 0 is 
undamped). Chambers and Jones7 obtained solutions 
approximately satisfying the current condition for a 
finite rectangular box, thin in the z direction, by adding 
eight such helicon waves. By using plane waves of both 
polarizations (sixteen plane waves in all) one can 
satisfy the current condition for a rectangular box 
exactly. As we pointed out in Sec. 3, these solutions do 
not, as a rule, correspond to proper modes of oscillation. 

6, SURFACE LOSSES 

A closer look at the fields associated with the problems 
of Sees. 4B, 5B, and 5C reveals some unusual results. 

In the problem of 4B, make the simplifying assump
tion /?= 0 and consider the limit of p —> 0 (with u—><*>, 
pu=const). Since in (4.6) and (4.8), ?£>>4co/co2, one can 
write 

ai^iuy, k 1^ iuy, 

a2^py, k2^ (00/002)7, (6.1a) 
where 

o)2=—/xo~1B0Ry2, 

p=-[(G>/a>2)
2-lJ12 forco/co2=l 

= ill-(a>/co2)
2J/2 forco/o>2 = l . (6.1b) 

bi— &i(0,l,—i)g*(«*-7*)e«7*7 

h2^b2(i,a>/oj2, — ip)ei(o3i-*'z)e-ip''x, 

and 

V io=( l / -D) (2e ) , 

br/h= (l/D)Zp-co/<a2-ie], 

€ = y/\y\, D=p-(a)/a)2) + ie. (6.2) 

Recalling Eq. (2.10), we have for a single plane wave 
of helicons 

j = fj,o~1kb. 

The current corresponding to bi is 

j i= (l/tio)(iuy)b1(Q&i)ei<a^vg)eu'*x (6.3) 

and the Joule loss (per unit area) in a surface layer of 
unit thickness due to ji is 

W= §p(j i*- j i )^~ / htii*'li)dx=Cpu, 
J—\ J -to 

(6.4) 
2 T , , (co/w2)

2 

C = — 60 2 , 
Mo2 l + [£-(co/co2)]2 

where star denotes complex conjugate. This loss is 
confined to a narrow region near the surface # = 0 [see 
(6.3) and note u—•» 00]; it may therefore be termed 
"surface loss." The surprising feature of (6.4) is that 
if bo, co, and y are fixed, so is C; and, if then, the limit 
p —> 0 is approached (in such a way that pu remains 
constant), W does not tend to zero. (Note that surface 
loss does not occur if the "tangential wavelength" 
2ir/y is infinite.) The other two terms in the expression 
for the Joule loss (per unit area) in a surface layer of 
unit thickness, 4/Li°Jp(J2*- J2) and the "cross term" 
X-i°|p(ji* ,J2+ji ,J2*), both tend to zero. In the 
approximation (6.1) the integrand of the former term 
does not fall off toward the interior of the sample; in 
the same approximation the "cross term" is always 
negligible compared to the surface loss. 

Suppose the direction of B0 is changed to make an 
angle 0 with the conducting surface. I t can be shown 
that for small enough 0 the normal component of ki 
becomes 

iuy 
ai^ (6.5) 

1—iu tan# 

and in all other respects, including amplitudes, bi, b2, 
and b r remain unchanged. (Note the sensitive depen
dence of «i on the angle between the conducting surface 
and the magnetic field, when u is large.) Denote the 
solution reducing to — a\ when 0 = 0 by a3 Csee (4-6)J. 
One can show that for 0 ^ 0 the component a% is not —a\ 
but becomes 

az<^%uyI(—1—iu tan0), 

thus furnishing an example in which the pairwise 
"degeneracy except for sign" in the allowed values of 
the wave vector's normal component is split up. 
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In (6.4) the integral from (— <x>) to 0 remains un
changed, as 0 is made to be different from zero, but its 
contributions come from a layer of thickness 
(1+u2 tan20)/2^7 rather than l/2uy and in the limit 
u—> oo this thickness tends to infinity rather than 
zero. The approximation equating the two integrals 
in (6.4) becomes invalid and in fact W —» 0 when p —» 0. 

However, for 6—0 Eq. (2.1) combined with Maxwell's 
equations yields a finite loss per unit volume even in 
the limit of perfect conduction. This unlikely result is 
no longer obtained when the microscopic processes of 
conduction are considered more carefully. When the 
resistivity becomes so low that the thickness of the 
surface layer becomes smaller than the cyclotron radius, 
the finite surface loss disappears. I t is easy to show that 
the details of the surface loss mechanism are the 
following. Right inside the surface there is an oscillating 
dipole layer consisting of surface charges on the bound
ary and space charge of opposite sign exponentially 
falling off (with skin depth 1/uy) toward the interior of 
the conductor. Between the two "charge layers" there 
is a strong electric field (perpendicular to the surface), 
which in turn gives rise (because of Bo) to a sheet of 
strong current parallel to the surface. The electric field 
as well as the current density are proportional to u, the 
thickness of the current sheet to «_1, the resistivity 
to w1; and the current squared, times thickness, times 
resistivity remains constant, as u—* <*>. However, in 
the extreme anomalous limit \ai\rc=yl^>0 (where 
rc= cyclotron radius, Z=mean free path) the only 
electrons contributing to electrical conduction are those 
moving parallel to the conductor's surface.29 The effect 
of the electric field on these is expressed by a term 
proportional to E- v in the Boltzmann equation, which 
is zero when E is perpendicular and v is parallel to the 
conductor's surface. Then the strong electric field 
between the two charge layers mentioned above can 
have no first-order effect on the conduction thus it 
cannot bring about the strong currents responsible for 
surface loss, and the surface loss (or at least surface loss 
through the previously described mechanism) dis
appears. Deciding what actually does happen is beyond 
the scope of this paper. 

This does not mean that the above remarks on surface 
loss can be disregarded. In the purest sodium samples 
available (of residual resistance ratio 8000), at liquid-
helium temperatures, and magnetic fields around 50 kG, 
the value of u is 100 and the cyclotron radius is around 
3 microns. For a "tangential wavelength" 2ir/y = 1 cm 
the thickness of the surface layer is about 15 microns, 
thus the extreme anomalous limit is not yet reached. 
I t is in fact quite easy to make experimental samples in 
which most of the loss is surface loss.30 

One may mention the following anomaly, which 
directly follows from the macroscopic equations: the 

29 M. la. AzbeF and E. A. Kaner, Zh. Eksperim. i Teor. Fiz. 32, 
896 (1956) [English transl.: Soviet Phys.—JETP 5, 730 (1957)]. 

30 J. M. Goodman and C. R. Legendy (unpublished work). 

energy in the electric fields at the surface tends to 
infinity as p —» 0. For, as was said above, the currents 
in the surface layer increase as u\ thus, from (2.1) (in 
which p -—> 0) so does the electric field. The square of 
the electric field multiplied by the thickness of the 
surface layer increases linearly with u. However, in a 
typical laboratory situation2 the magnetic field energy 
density in the surface layer dominates by about a 
factor of 1014 over the electric-field energy density, so 
that the anomaly of electric fields is merely of academic 
interest. 

The narrowness of the surface layer confining the 
mode bi (of order 10 fx in Ref. 30) and the fact that 
asymptotically (bi) l /=i(bi)«, can be used to advantage 
in reducing the number of equations necessary for 
solving boundary-value problems. Instead of using the 
ordinary boundary condition that all three components 
of b are continuous everywhere on the boundary one 
can assume that this is true everywhere except at 
surfaces parallel to B0 at which only bx and by—ibz are 
continuous (x being the direction of the outward 
normal), while a third quantity by+ibz may suffer 
discontinuity. For the wave vector inside only 0:2 (and 
possibly a*) is allowed; on and a3 are discarded. This 
viewpoint amounts to altogether disregarding the mode 
bi and retaining it on the record only to provide 
explanation for the surface singularity: "There are 
surface currents and therefore the tangential component 
of b may be discontinuous.'' 

For the problem of Eq. (6.1) the remaining two 
boundary conditions provide only two equations, but, 
also, there are only two unknowns: 62 and br. The 
method is applicable to the cylinder of 5C whenever 
br{5>\. The fact that the surface layer may be approxi
mated by an infinite plane manifests itself in the 
asymptotic form of the Bessel function Jn(ip) for large, 
real p: Jn(ip)^in(2irp)~ll2ep which is essentially an 
exponential function; Jn(ip) and Jn+i(ip) differ only 
in a factor i. 

7. SUMMARY AND CONCLUDING REMARKS 

By combining the equation E+jRjXB 0 =pj with 
Maxwell's equations, we arrived at the differential 
equation governing helicons, found its plane-wave 
solutions and dispersion relation. We pointed out that 
for plane waves the differential equation can be written 
in the form of a precession equation. When the medium 
is a perfect conductor, the mode rotating in the sense 
of the cyclotron rotation propagates freely (the other 
mode is exponentially damped), and the current and 
magnetic field are always either parallel or antiparallel 
(in the former case the spatial configuration forms a 
left-handed screw, in the latter case it forms a right-
handed screw). Despite the incompressibility of the 
electron gas, the electric field has a longitudinal com
ponent of the same order of magnitude as the trans
verse component; the apparent contradiction was 



A1724 C. R. L E G E N D Y 

resolved by simply noting that both field components 
were very small. The dispersion relation for helicons 
reduces to the ordinary skin-effect formula, if the 
magnetic field is made to be small, or the resistivity 
large. At the beginning of the calculation the equations 
have to be linearized by assuming that the helicon field 
is small, but, it turns out, single plane waves can 
propagate even if their amplitudes are large (though 
several plane waves would usually interact). 

It was shown that if the field outside the sample is 
quasistatic, the boundary condition that all components 
of the magnetic field are continuous at the boundary 
implies that: (i) the electric current does not cross the 
boundary, and (ii) for the vacuum region it is possible 
to construct an electric field whose curl is — dB/dt and 
whose tangential components join continuously with 
the field inside the sample. 

We formulated the problem of driven oscillations in 
terms of a "driving field," a "reflected field" and a 
"transmitted field" (which is the helicon field); the 
first of these is the field that would be set up by driving 
coils if the sample were removed, the second and third 
can be determined by means of symmetry arguments, 
etc., except for multiplicative constants; these constants 
are determined from the boundary conditions. We 
solved the problem of driven oscillations for a few 
simple cases: Infinite plates, infinite cylinders, and 
semi-infinite regions. The response of plate samples was 
found to be quite sensitive to dependence of the driving 
field on the tangential coordinates; the approximate 
value of the fundamental resonance frequency for a 
square plate whose dimensions along x, y, z compare 
as 15:15:1, was found to be 5% higher than it would 
be if the first two dimensions were infinite. The effect 
is still more drastic in plates parallel to B0. In this case 

any variation along the z direction brings about a 
surface loss, which for small resistivities fails to decrease 
as the resistivity is decreased, until the limit of 
anomalous skin effect is reached, in which limit the loss 
disappears. However, for the purest of sodium samples 
presently available, at 4.2°K, and in a magnetic field 
of 50 kG, the anomalous skin effect only becomes 
marked for tangential wavelengths well below 1 cm. 
The surface mode causing the loss involves a thin 
oscillating dipole layer with a strong electric field and 
strong electric current between the charge layers; 
ignoring anomalous skin effect, the energy per cm2 in 
the electric field tends to infinity as p —> 0. When the 
dipole layer is thin enough, the surface mode may be 
represented by an "equivalent boundary condition" on 
magnetic fields, and thereby the number of equations 
describing the boundary-value problem is reduced. The 
surface mode only appears in boundaries parallel to B0. 

The present work has three obvious limitations: (i) 
No attempt has been made to treat resonances in finite 
samples exactly, (ii) We have not translated the 
theoretical results into immediately useable graphs. 
(iii) The treatment of anomalous skin effect with a 
nonzero wave vector along the conducting surface has 
been bypassed and replaced by a simple reductio ad 
absurdum argument. 
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